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Coastal flooding

Coastal flooding during a storm in
Biarritz (Christine storm, March 2014)

Damages to the Casino building
(Christine storm, March 2014)
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Coastal flooding

Coastal flooding is a temporary inundation resulting from the
interaction of several coastal processes: tide, waves, storm surge.

Components of total water level responsible for coastal flooding

→ Occurs when total water level exceeds the elevation of defense
infrastructure.
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Coastal flooding risk

→ Coastal flooding risk expected to increase in the future due
mainly to sea level rise and on-going urbanization of the coastal
areas.
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How to prepare for coastal flooding disaster?
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Statistical learning methods

Representation of statistical learning domain

Statistical learning methods (SLMs): Tools and methods for
modeling, predicting and understanding complex data.
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SLMs

→ With more data available, the use of SLMs for predictive
models in various domain becomes more legitimate and justified.

Interest in Google searches
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SLMs and coastal flooding

Machine learning Deep learning Statistical models

Algorithms learning 
patterns from data

Sub-class of ML able
to detect features 

and learn from
complex data

Models based on 
statistics

Make the most 
accurate predictions

Understand the data 
and study relationships 

between variables

Predictive models for
tide (Granata et al., 2021),

wave height 
(Makarynskyy, 2005) 

or storm surge 
(Lee et al., 2018)

Data assimilation for
wave models 

(Moeini et al., 2012) 

Predictive models for 
wave height time-series
(Sadeghifar et al., 2017)

Image analysis to 
estimate nearshore 

bathymetry 
(Benshila et al., 2020)  

Storm impact models 
with Bayesian networks:

-Shoreline retreat 
(Beuzen et al., 2018)

- Prediction of coastal 
hazards 

(Poelhekke et al., 2016)
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Problematic

How SLMs can contribute to the improvement of coastal risk
assessment tools and more particularly in the development of

an EWS which aims to reduce coastal flooding risk?
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Outline of the thesis

1 SLMs to improve wave forecast at a specific location

2 Automatic creation of a storm impact database from images
generated by video monitoring stations

3 Development of a storm impact model using data from
monitoring networks and data extended by SLMs
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Improving wave forecast with SLMs
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Improving locally wave forecast

Numerical wave models have a tendency to underestimate the
wave parameters in energetic conditions (Arnoux et al., 2018).

Method:

Error prediction method

Main results: we reduced the RMSE of the MFWAM wave model
by 40% for wave height and 30% for wave period with gradient
boosting trees (Callens et al., 2020).
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Storm impact database
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Data about storm impact

Storm impact databases are rare,
sparse and mostly come from
archives (Abadie et al., 2018) or
insurance data (Naulin et al.,
2016).

We do not have direct
observations!

→ Can we use video monitoring
networks already deployed to
create routinely storm impact
databases?
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Video monitoring and timestacks

Video monitoring systems create different types of images
including timestacks.
Timestacks: time varying pixel intensities along a particular
cross-shore transect.
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Contribution

Methodology based on convolutional neural networks (deep
learning) to classify automatically timestacks into 3 storm
impact regimes based on the scale of Sallenger (2000):

(a) Swash regime (b) Collision regime (c) Overwash regime
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The study sites

Biarritz (France) and Zarautz (Spain)
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The study sites

Biarritz

7907 Swash, 211 Collision, 54
Overwash between 2017 and

nowadays

Zarautz

19596 Swash, 2776 Collision, 162
Overwash between 2015 and

nowadays

→ Class imbalance!
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Short introduction on CNN

Simplified convolutional neural network

→ Update in iterative manner the weights to minimize a cost
function (Categorical Cross-Entropy for multi-class classification).
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What is the best CNN architecture?



21/50

Introduction Improving wave forecast Storm impact database Storm impact model Conclusion

Transfer learning

Transfer learning concept

Images from ImageNet (Ahmed et al.

2017)

The efficiency of pretraining will be tested twice:

From ImageNet (largest labeled image dataset) to our task

Between sites



22/50

Introduction Improving wave forecast Storm impact database Storm impact model Conclusion

Class imbalance problem

Limited number of Collision and Overwash events for both sites
(class imbalance). We will test two methods to cope with this
problem:

Oversampling: oversampling of the minority classes (change
in class distribution) to reduce imbalance ratio

Cost-sensitive learning: puts more weight on the minority
classes during the training of the CNN

We choose F1-score to compare the CNNs due to its robustness
to class imbalance.
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General workflow

Data divided into training (65%), validation (15%) and testing set
(20%).

Data processing
CNN

Training

Assessing performances

- Resizing
- Oversampling ?

- Data augmentation
- Cost sensitive learning ?

- Which CNN arch. ?
- For deeper arch. :
pre-training or not ?

Best model

F1-score
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Best model for Biarritz

→ VGG16 with oversampling and transfer learning (ImageNet):
F1-score of 0.866 in 20 epochs.

Confusion matrix Biarritz test data

Predicted
Swash Collision Overwash

Observed
Swash 1576 7 0
Collision 4 34 2
Overwash 1 2 9
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Best model for Zarautz

→ VGG16 with oversampling and transfer learning (ImageNet):
F1-score of 0.858 in 13 epochs.

Confusion matrix for Zarautz test data

Predicted
Swash Impact Overwash

Observed
Swash 4265 40 0
Impact 13 617 8
Overwash 0 25 30
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Transfer learning

CNN Time (min) Epochs F1-score

Biarritz
VGG16 (OV) 69.6 28 0.813
VGG16 (OV, ImageNet) 49.9 20 0.866
VGG16 (OV, Zarautz) 47 19 0.823
Zarautz
VGG16 (OV) 146.6 22 0.792
VGG16 (OV, ImageNet) 86.5 13 0.858
VGG16 (OV, Biarritz) 92 14 0.885

→ Better results than training from scratch and better results than
pretraining with ImageNet for Zarautz!
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Advantages and limitations

Advantages

Transferability of the
method to new sites
facilitated with pre-training

Room for improvements:

Hyperparameters
Data augmentation

As more data are collected,
CNN are expected to yield
better results

Limitations

Lack of comparison with
human level performance or
other image processing
techniques

Image annotation is tedious
and time consuming

Extract only qualitative
information on coastal
flooding
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Perspectives

Compare this methodology with other image processing
techniques

Extend this work to detect and count the number of Collision
or Overwash events

Explore semi-supervised learning which aims to learn form
labeled and unlabeled data (Baur et al. 2017) to adapt this
methodology for new sites
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Conclusion
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Storm impact model
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Storm impact model

One objective of the thesis: develop a storm impact model.

Simplified storm impact model

→ Crucial step in early warning systems!
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Storm impact model

→ Storm impact model on the Grande Plage of Biarritz
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Monitoring networks near Biarritz

Data collected routinely for
decades by monitoring
networks:

Tide gauge (Shom) for
water level

Wave buoy (Candhis) for
offshore wave
characteristics

Weather station
(MeteoFrance) for
meteorological variables

Video station for storm
impact regime
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Bayesian networks

Probabilistic graphical models representing a set of variables and
the dependencies between those variables.
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Bayesian networks

Advantages:

Instantaneous predictions when evidences are provided to the
networks

Summarize complex systems into intuitive graphs

Great tools for decision making, communication with
stakeholders

→ Commonly used as storm impact model (Poelhekke et al., 2016)
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Bayesian networks

Our goal:
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BN based on observational data

→ From 03/2017 to 11/2020 with 80% training set, 20% testing
set.
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BN based on observational and extended data

Wave char. (Num): Reanalysis from MFWAM wave model
improved by our method (Callens et al., 2020).

From 01/1993 to 11/2020 with same testing set than the first
BN.
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Performances of the bayesian networks

Descriptive performance (training set)

Precision Recall F1-score
BN based on obs. data 0.743 0.709 0.72
BN based on obs.
and ext. data

0.871 0.88 0.875

Predictive performance (test set)

Precision Recall F1-score
BN based on obs. data 0.594 0.673 0.628
BN based on obs.
and ext. data

0.63 0.789 0.691
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Predictive performances

BN based on observational data

Predicted
Swash Collision Overwash

Observed
Swash 1209 24 1
Collision 10 15 6
Overwash 3 1 5

BN based on observational and extended data

Predicted
Swash Collision Overwash

Observed
Swash 1205 23 6
Collision 10 19 2
Overwash 0 2 7
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Bayesian network predictions

s1_0_300 52%

s2_300_305 46%

s3_305_up 3%

Wave Dir.

s1_0_1 0%

s2_1_3 0%

s3_3_4 0%

s4_4_6 0%

s5_6_10 100%

Significant wave height

s1_0_7 2%

s2_7_9 9%

s3_9_12 39%

s4_12_15 44%

s5_15_up 4%

Wave period

s1_0_2 0%

s2_2_3 0%

s3_3_3 0%

s4_3_4 100%

s5_4_4 0%

s6_4_6 0%

Tide

s1_960_985 1%

s2_985_10... 13%

s3_1000_1... 73%

s4_1018_up 13%

Atm. Pres.

s1_0_6 18%

s2_6_12 50%

s3_12_up 33%

Wind Speed

s1_0_135 7%

s2_135_215 9%

s3_215_up 85%

Wind Dir.

s1_m06_m... 11%

s2_m015_ ... 30%

s3_015_up 58%

Atm. Surge

s1_Swash 6%

s2_Impact 37%

s3_Overwash 57%

Storm Regime

BN obtained with observed and extended data
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Bayesian network predictions

s1_0_300 50%

s2_300_305 40%

s3_305_up 10%

Wave Dir.

s1_0_1 0%

s2_1_3 0%

s3_3_4 100%

s4_4_6 0%

s5_6_10 0%

Significant wave height

s1_0_7 3%

s2_7_9 11%

s3_9_12 40%

s4_12_15 42%

s5_15_up 4%

Wave period

s1_0_2 0%

s2_2_3 0%

s3_3_3 0%

s4_3_4 100%

s5_4_4 0%

s6_4_6 0%

Tide

s1_960_985 1%

s2_985_10... 13%

s3_1000_1... 73%

s4_1018_up 13%

Atm. Pres.

s1_0_6 79%

s2_6_12 21%

s3_12_up 1%

Wind Speed

s1_0_135 23%

s2_135_215 21%

s3_215_up 56%

Wind Dir.

s1_m06_m... 3%

s2_m015_ ... 79%

s3_015_up 19%

Atm. Surge

s1_Swash 75%

s2_Impact 20%

s3_Overwash 5%

Storm Regime

BN obtained with observed and extended data
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Advantages and limitations

Advantages

We avoid potential bias
related to numerical models

Instantaneous prediction for
coastal flooding

Take advantage of the
networks already installed

Limitations

Lack of comparison with
classical approaches

Model to extend storm
regime variable has not been
validated

Coastal flooding risk only
valid on the transect used to
create the timestack images
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Perspectives

Observational data could be completed with:

Synthetic events and their simulated impact (physic-based
modeling)
Historical database (Abadie et al., 2018) or expert knowledge

Comparison with classical approaches that involve numerical
modeling

Integration of temporality with dynamic bayesian networks
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Conclusion
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Conclusion
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General conclusion

Improve wave forecast with SLMs
 and local observations

Creation of storm impact database 
based on video monitoring 

and deep learning

Bayesian networks to model storm 
Impact based on observational 

data and SLMs

Data assimilation on
wave data

Storm impact 
database

Prediction of storm impact (qualitative)
based on data collected by monitoring 

networks and SLMs
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Scientific contributions

2 publications in
international journals and
1 in preparation

2 communications in
national and
international conferences

R + Python code and
pre-trained weights for
CNN on Github
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Perspectives

Include temporality in data
assimilation method and
storm impact model

Operational implementation
of the proposed methods

Physic-based modeling to
generate more extreme data
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Thank you!
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Extension of the database

Aim: Find the best generalizing models for storm surge and storm
impact.

Solution: Test several SLMs (random forest, gradient boosting
trees, multinomial model, shallow neural networks) and
hyperparameters with cross validation.

Explanatory variables Target variable Best model

Wave char. (Num.)
Meteo. cond. (Obs.)
Tide (Mod.)

Storm surge Random forest

Wave char. (Num.)
Meteo. cond. (Obs.)
Tide (Mod.)
Storm surge (Mod.)

Storm impact Random forest
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