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Coastal flooding

Coastal flooding during a storm in Damages to the Casino building
Biarritz (Christine storm, March 2014) (Christine storm, March 2014)
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Coastal flooding

Coastal flooding is a temporary inundation resulting from the
interaction of several coastal processes: tide, waves, storm surge.

Components of total water level responsible for coastal flooding

— Occurs when total water level exceeds the elevation of defense
infrastructure.
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Coastal flooding risk

= { Hazard ] X [ Exposure] X (Vulnerability}

Dangerous Structures Physical
phenomenon Population Social

with given Agriculture Economic
intensity and Business Environmental

probability Assets Coping capacity

— Coastal flooding risk expected to increase in the future due
mainly to and on-going urbanization of the coastal
areas.
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How to prepare for coastal flooding disaster?

monitoring networks
Continuous and Monitoring of coastal
sustainable data processes

Predictive models
(Physic-based or data-driven)

L Installation of

Y

\

Early warning systems
(EWS)

Acquisition of knowledge |
about hazards

o
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Statistical learning methods

Exploratory Predictive

Statistics Machine learning

Confirmatory

Representation of statistical learning domain

Statistical learning methods (SLMs): Tools and methods for
modeling, predicting and understanding complex data.
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SLMs

— With more data available, the use of SLMs for predictive
models in various domain becomes more legitimate and justified.

Machine learning Deep learning
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Interest in Google searches
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SLMs and coastal flooding

[Machine Iearning] [ Deep learning J
c
o Sub-class of ML able
-‘é Algorithms learning to detect features Models based on
5 patterns from data and learn from statistics
a L complex data )

- N
£ Make the most Ugd?rztandl the deﬁa
< accurate predictions el bs Sy U atllons [

L ) etween variables

ﬁredictive models for

tide (Granata et al., 2021), | | Predictive models for Storm impact models

wave height wave height time-series with Bayesian networks:
® (Makarynskyy, 2005) (Sadeghifar et al., 2017)
] or storm surge -Shoreline retreat
> (Lee et al., 2018) Image analysis to (Beuzen et al., 2018)

estimate nearshore - Prediction of coastal
Data assimilation for bathymetry hazards
wave models (Benshila et al., 2020) (Poelhekke et al., 2016)
\(Moeini etal,, 2012)
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Problematic

How SLMs can contribute to the improvement of coastal risk
assessment tools and more particularly in the development of
an EWS which aims to reduce coastal flooding risk?
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Outline of the thesis

@ SLMs to improve wave forecast at a specific location

@ Automatic creation of a storm impact database from images
generated by video monitoring stations

© Development of a storm impact model using data from
monitoring networks and data extended by SLMs
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Improving wave forecast with SLMs
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Improving locally wave forecast

Numerical wave models have a tendency to underestimate the
wave parameters in energetic conditions (Arnoux et al., 2018).

Method:

Compute errors Train SLMs to Add the predicted
of the model predict the errors errors to wave forecast

Error prediction method

Main results: we reduced the RMSE of the MFWAM wave model
by 40% for wave height and 30% for wave period with gradient
boosting trees (Callens et al., 2020).
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Data about storm impact

Storm impact databases are rare,
sparse and mostly come from
archives (Abadie et al., 2018) or
insurance data (Naulin et al.,
2016).

We do not have direct
observations!

— Can we use video monitoring
networks already deployed to
create routinely storm impact
databases?

Video station of Biarritz
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Video monitoring and timestacks

Video monitoring systems create different types of images
including timestacks.

Timestacks: time varying pixel intensities along a particular
cross-shore transect.
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Methodology based on convolutional neural networks (deep
learning) to classify automatically timestacks into 3 storm
impact regimes based on the scale of Sallenger (2000):
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The study sites

Biarritz (France) and Zarautz (Spain)
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The study sites

Biarritz Zarautz

7907 Swash, 211 Collision, 54 19596 Swash, 2776 Collision, 162
Overwash between 2017 and Overwash between 2015 and
nowadays nowadays

— Class imbalance!
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Short introduction on CNN

—SWASH
— [] —coLLISIoN
—OVERWASH

O

FULLY
\CDNVOLUI]ON + RELU POOLING CONVOLUTION + RELU  POOLING FLATTEN O rep SOFTMAX
INPUT Y Y
FEATURE LEARNING CLASSIFICATION

Simplified convolutional neural network

— Update in iterative manner the weights to minimize a cost
function (Categorical Cross-Entropy for multi-class classification).
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What is the best CNN architecture?

Fully
Convoluion ubsamping COMOMION (L COMVOULON connected Outpur
e R B wer

LeNet (Lecun et al., 1998) AlexNet (Krizhevsky et al., 2012)
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VGG16 (Simonyan et al., 2014) Inception v3 (Szegedy et al., 2016)
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Transfer learning

CNN with faster
training and better
performances

Images from ImageNet (Ahmed et al.
2017)

Transfer learning concept

The efficiency of pretraining will be tested twice:
@ From ImageNet (largest labeled image dataset) to our task

@ Between sites
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Class imbalance problem

Limited number of Collision and Overwash events for both sites
(class imbalance). We will test two methods to cope with this
problem:

e Oversampling: oversampling of the minority classes (change
in class distribution) to reduce imbalance ratio

o Cost-sensitive learning: puts more weight on the minority
classes during the training of the CNN

We choose F1-score to compare the CNNs due to its robustness
to class imbalance.
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General workflow

Data divided into training (65%), validation (15%) and testing set
(20%).

Data processing

- Which CNN arch. ?

- Resizing

- Oversampling 2 - For deeper arch. :

pre-training or not ?

- Data augmentation
- Cost sensitive learning ?

L

Assessing performances

Fl-score

Best model

II
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Best model for Biarritz

— VGG16 with oversampling and transfer learning (ImageNet):
F1-score of 0.866 in 20 epochs.

Confusion matrix Biarritz test data

Predicted
Swash Collision Overwash
Swash 1576 7 0
Observed Collision 4 34 2
Overwash 1 2 9
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Best model for Zarautz

— VGG16 with oversampling and transfer learning (ImageNet):
F1-score of 0.858 in 13 epochs.

Confusion matrix for Zarautz test data

Predicted
Swash Impact Overwash
Swash 4265 40 0
Observed Impact 13 617 8
Overwash 0 25 30
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Transfer learning

CNN Time (min) Epochs Fj-score
Biarritz

VGG16 (OV) 69.6 28 0.813

VGG16 (OV, ImageNet) 49.9 20 0.866

VGG16 (OV, Zarautz) 47 19 0.823

Zarautz

VGG16 (OV) 146.6 22 0.792

VGG16 (OV, ImageNet)  86.5 13 0.858

VGG16 (OV, Biarritz) 92 14 0.885

— Better results than training from scratch and better results than
pretraining with ImageNet for Zarautz!
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Advantages and limitations

Advantages Limitations
@ Transferability of the @ Lack of comparison with
method to new sites human level performance or
facilitated with pre-training other image processing
@ Room for improvements: techniques
o Hyperparameters @ Image annotation is tedious
e Data augmentation and time consuming
@ As more data are collected, e Extract only qualitative
CNN are expected to yield information on coastal

better results flooding
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Perspectives

@ Compare this methodology with other image processing
techniques

@ Extend this work to detect and count the number of Collision
or Overwash events

@ Explore semi-supervised learning which aims to learn form
labeled and unlabeled data (Baur et al. 2017) to adapt this
methodology for new sites
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Conclusion

[Video monitoring station

Timestack database ]

Y

4 New timestacks h
“ | Qualitative data
that can be used to:
Trained CNN - Calibrate and validate
- physic-based models
= - Train data-driven models
w70 0 e 1o Y
o

Weights that can be
used for pre-training in
a new site
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Storm impact model

One objective of the thesis: develop a storm impact model.

Meteorological conditions
(wind, atmospheric pressure)

Storm impact model Onshore hazard

Hydraulic boundary
conditions (tide, wave)

Simplified storm impact model

— Crucial step in early warning systems!
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Storm impact model

Regional spectral

wave model o
Empirical wave runup

+ formula such as
Stockdon et al., (2006)

Regional spectral
wave model Phase-resolving
+ wave models
(Grilli et al., 2020)

Data:
-Coastal processes
(Tide, waves, weather)
-Storm impact regime

SLMs

{ Proposition }[ Classical approaches ]

— Storm impact model on the Grande Plage of Biarritz
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Data collected routinely for
decades by monitoring
networks:
o Tide gauge (Shom) for
water level
e Wave buoy (Candhis) for
offshore wave
characteristics

@ Weather station
(MeteoFrance) for

meteorological variables
. i Tide gauge
@ Video station for storm -

impact regime

Anglet Buoy

Study site + Vjdeo station

§ Weather station
J i

A
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Bayesian networks

Probabilistic graphical models representing a set of variables and
the dependencies between those variables.

High waves

Flooding

Flooding
High waves Storm| T F
F F 00 1.0

F T 0.8 0.2

T F 09 0.1

T T 0.99 0.01
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Bayesian networks

Advantages:

@ Instantaneous predictions when evidences are provided to the
networks

@ Summarize complex systems into intuitive graphs

o Great tools for decision making, communication with
stakeholders

— Commonly used as storm impact model (Poelhekke et al., 2016)
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Bayesian networks

Our goal:
Wave characteristics from | '/Meteorological conditions
Wave buoy (Candhis) from weather station
(MeteoFrance)
-Significant wave height
-Wave period -Atmospheric pressure
L -Wave direction -Wind speed

\ :wirection J

Storm impact regime

L J

Storm surge
extracted from
tide gauge (Shom)

Modeled
astronomical tide
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BN based on observational data

eather char. (Obs)
Wave char. (Obs.)

‘Wave char. (Num.]

ide (Mod.)
Storm surge (Obs.)
Storm impact (Obs.

1
1
1
1
1
1
1
1
1
1
T
1
L]
1

01/1996 01/2001 01/2006 01/2011 01/2016 01/2021

— From 03/2017 to 11/2020 with 80% training set, 20% testing
set.
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BN based on observational and extended data

Weather char. (Obs),

Wave char. (Obs.)

I
I
I
I
I
1
I
i
I
I
1
I
1
1
1

01/1996 01/2001 01/2006 01/2011 01/2016 01/2021

Wave char. (Num): Reanalysis from MFWAM wave model
improved by our method (Callens et al., 2020).

From 01/1993 to 11/2020 with same testing set than the first
BN.
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Performances of the bayesian networks

Descriptive performance (training set)

Precision Recall F1-score
BN based on obs. data 0.743 0.709 0.72

BN based on obs. 0.871 0.88 0.875
and ext. data

Predictive performance (test set)

Precision Recall F1l-score
BN based on obs. data 0.594 0.673 0.628

BN based on obs. 0.63 0.789 0.691
and ext. data
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Predictive performances

BN based on observational data

Predicted
Swash Collision Overwash
Swash 1209 24 1
Observed Collision 10 15 6
Overwash 3 1 5
BN based on observational and extended data
Predicted
Swash Collision Overwash
Swash 1205 23 6
Observed Collision 10 19 2

Overwash 0 2 7
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Bayesian network predictions

[@) Wave period
[@] Atm. Surge s1.0_7 2%
(@) Atm. Pres. s1_m06_m... 11%] s2.7.9 9%
s1_960_985 1% | /527"10157 ...30% s3_9_12 39% -

s2_985_10...13% s3_015_up 58% s4_12_1544% | [l

s3_1000_1... 73% | [l s5_15_up 4%|| =
s4_1018_up 13%|]

(@) Storm Regime [@] Wave Dir.
[@] Wind Speed s1_Swash ]

s2_Impact 37%
s3_Overwash 57%

s1.06 18%
s2.6_12 50%
s3_12_up33%

[@) Wind Dir.
s1.0.135 7%
s2_135_215 9%
s3_215_up 85%

s4 3 4100%
s5.4 4 0%
s6.4.6 0%

BN obtained with observed and extended data



[@] Atm. Pres.

52_985_10...13%
53_1000_1...73% [
s4_1018_up 13%|]

) Wind Speed
s1.0 6 79%
s2.6_12 21%
s3_12_up 1%

=

[@] Wind Dir.
S1.0_135 23%)
52_135_21521%)

s1_960_985 1%|| /,—’PSZ,mm 5_..79%

Bayesian network predictions

[@) Atm. Surge
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QO Wave period
s1.0.7  3%|
s2.7.9 1%

s3_015_up 19%|[l]

[@] Storm Regime
s1_Swash
s2_Impact 20%
s3_Overwash 5%

s3_9_12 40% [l
s4_12_1542% [l
s5_15_up 4%|| =

Wave Dir.
s1.0_300 50% ]

(@) Tide

s1.02 0%
5223 0%
s333 0%
s4 3 4100%

s2_300_30540%
s3 305_up 10%

[<]

(O Significant wave height

101 0%
5213 0%
s3 3 4 100%
s4 46 0%
s5 610 0%

BN obtained with observed and extended data
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Advantages

@ We avoid potential bias
related to numerical models

@ Instantaneous prediction for
coastal flooding

@ Take advantage of the
networks already installed

Limitations

@ Lack of comparison with
classical approaches

@ Model to extend storm
regime variable has not been
validated

@ Coastal flooding risk only
valid on the transect used to
create the timestack images
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Perspectives

@ Observational data could be completed with:

o Synthetic events and their simulated impact (physic-based
modeling)
o Historical database (Abadie et al., 2018) or expert knowledge

@ Comparison with classical approaches that involve numerical
modeling

@ Integration of temporality with dynamic bayesian networks



Concl

-{ Storm impact regime

usion

Data from monitoring
networks

Data extension
with SLMs

Bayesian network
based on
observational data

Bayesian network

based on
observational and
extended data

Storm impact model
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- Short-term predictions
for EWS

- Decision making tool

- Explore scenarios
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Conclusion
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General conclusion

-

Improve wave forecast with SLMs
and local observations

-
Creation of storm impact database Data assimilation on
based on video monitoring wave data
&

and deep learning

Storm impact
database

-

IBayesian networks to model storm
Impact based on observational <
data and SLMs

!

Prediction of storm impact (qualitative)
based on data collected by monitoring
networks and SLMs

N
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Scientific contributions

Applied Ocean Research

@ 2 publications in e
international journa Is and Using Random forest and Gradient boosting trees
1lin prepa ration to improve wave forecast at a specific location

Aurlen Calln 52, Denis Morichon®, téphane Abadie , Mattias Delpey,Benot Lquet
@ 2 communications in
. Automatic Creation of Storm Impact Database Based
nation al a nd on Video Monitoring and Convolutional Neural
. . Networks
international conferences 1150 s o 0 e €

pre-trained weights for

CNN on Github & AurelienCallens / CNN_Timestacks
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Perspectives

@ Include temporality in data
assimilation method and
storm impact model

@ Operational implementation
of the proposed methods

@ Physic-based modeling to
generate more extreme data
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Extension of the database

Aim: Find the best generalizing models for storm surge and storm
impact.

Solution: Test several SLMs (random forest, gradient boosting
trees, multinomial model, shallow neural networks) and
hyperparameters with cross validation.

Explanatory variables  Target variable Best model

Wave char. (Num.)
Meteo. cond. (Obs.)  Storm surge Random forest
Tide (Mod.)

Wave char. (Num.)

Meteo. cond. (Obs.)
Tide (Mod.)

Storm surge (Mod.)

Storm impact  Random forest
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